Trace phase formation, crystallization kinetics and crystallographic evolution of a lithium disilicate glass probed by synchrotron XRD technique
نویسندگان
چکیده
X-ray diffraction technique using a laboratory radiation has generally shown limitation in detectability. In this work, we investigated the in situ high-temperature crystallization of a lithium disilicate glass-ceramic in the SiO2-Li2O-CaO-P2O5-ZrO2 system with the aid of synchrotron radiation. The formation of lithium metasilicate and other intermediate phases in trace amount was successfully observed by synchrotron X-ray diffraction (SXRD). The crystallization mechanism in this glass was thus intrinsically revised to be the co-nucleation of lithium metasilicate and disilicate, instead of the nucleation of lithium disilicate only. The phase content, crystallite size and crystallographic evolutions of Li2Si2O5 in the glass-ceramic as a function of annealing temperature were studied by performing Rietveld refinements. It is found that the growth of Li2Si2O5 is constrained by Li2SiO3 phase at 580-700°C. The relationship between the crystallographic evolution and phase transition was discussed, suggesting a common phenomenon of structural response of Li2Si2O5 along its c axis to other silicon-related phases during glass crystallization.
منابع مشابه
Effect of P2O5 on Crystallization Behavior and Chemical Resistance of Dental Glasses in the Li2O-SiO2-ZrO2 System
Commercial dental lithium disilicate based glass-ceramics containing various amounts of P2O5 were synthesized. Regarding the crystallization behavior and physico-chemical properties of the glasses, the optimum percent of P2O5 was determined.as 8 %wt. Crystallization behavior of the glasses was investigated by X-ray diffraction (XRD) and differential thermal analysis (DTA). The micro-hardness a...
متن کاملVoltage increase of aqueous lithium-ion batteries by Li-ion conducting Li1.5Al0.5Ge1.5(PO4)3 glass-ceramic
In this research, a lithium ion conducting lithium aluminum germanium phosphate (LAGP) glass-ceramic with a formula of Li1.5Al0.5Ge1.5(PO4)3 was synthesized by melt-quenching method and subsequent crystallization at 850 °C for 8 h. The prepared glass-ceramic was characterized using X-ray diffraction analysis (XRD) and field emission scanning electron microscopy (FESEM). The XRD patterns exhib...
متن کاملPreparation, characterization and stability of Li-ion conducting Li1.5Al0.5Ge1.5(PO4)3 glass-ceramic with NASICON-type structure
A conducting lithium aluminum germanium phosphate (LAGP) glass-ceramic with a formula of Li1.5Al0.5Ge1.5(PO4)3 was synthesized by melt-quenching method and subsequent crystallization at 850 °C for 8 h. The prepared glass-ceramic was characterized using differential scanning calorimetry (DSC), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and AC impedance techniqu...
متن کاملCrystallization Kinetics and Characterization of Nanostructure Mica Glass-Ceramics with Optical Transparency
Transparent glasses in a system of Li2O-MgO-SiO2-Al2O3-Fchemical constituents were prepared by melt quenching method. In the fabrication of nanocrystal glass-ceramics, controlled nucleation and subsequent crystal growth were necessary to avoid loss of transparency. It was therefore important to understand thermal properties and crystallization kinetic...
متن کاملKinetics of Ceramic Phase Crystallization in a Glass Derived from Wastes of Iron and Steel Industry
Intensified environmental regulations have posed numerous challenges in the disposal of industrial wastes. The steel industry is one of the biggest production industries, with a considerable amount of daily wastes. Production of glass-ceramic from the steel industry waters is one of the proper solutions for this problem. In this study, the application utilization of different wastes (such as bl...
متن کامل